

MATTHEW REYNOLDS, Ph.D.

LABORATORY OF RUI ZHANG, Ph.D.
DEPARTMENT OF BIOCHEMISTRY AND MOLECULAR BIOPHYSICS
WASHINGTON UNIVERSITY IN ST. LOUIS

JANE COFFIN CHILDS FELLOW

Dr. Matthew Reynolds is fascinated with the elegant structures of our cytoskeleton – a large network consisting of protein fibers and associated proteins that gives shape and structure to cells. During his thesis research he developed machine-learning based techniques to enable the structural determination of curved and bundled actin structures. In his fellowship, Reynolds will detail specialized cytoskeleton super-assemblies from parasitic cells.

During Reynolds' thesis research in <u>Dr. Greg Alushin's lab at Rockefeller University</u>, he made important contributions to processes involved in cryo-EM structure determination. Reynolds developed computational techniques that were crucial in <u>reconstructing bent F-actin segments</u> and <u>bundled F-actin</u> that help shape and move cells.

Now, in <u>Dr. Rui Zhang's lab at Washington University in St. Louis</u>, Reynolds will apply his structural biology expertise to more complex cellular systems. He will continue to investigate the cytoskeleton and will use a combination of cryo-EM and cryo-electron tomography (cryo-ET) to examine microscopic single-cell organisms. These studies will provide mechanistic insights into the nanoscale protein-protein interactions that drive micron-scale cytoskeleton organization in single-celled parasites. His research will likely push forward technological development in structural determination via cryo-EM and cryo-ET. Reynolds anticipates that his findings will inform parasitic disease models and may reveal novel therapeutic targets.

