Information for Our Community

Whether you are part of our community or are interested in joining us, we welcome you to Washington University School of Medicine.

close  


Visit the News Hub

ID’ing features of flu virus genome may help target surveillance for pandemic flu

Findings may help health experts know which strains to watch

by Tamara BhandariJanuary 31, 2018

Getty Images

The current influenza outbreak – the worst across the United States in nearly a decade – is worrisome but still far less dire than a pandemic flu, which could kill millions. Such pandemics are exceedingly difficult to predict, but new research at Washington University School of Medicine in St. Louis offers details about flu viruses that could help improve surveillance to detect a potential pandemic.

Pandemic flu occurs when flu strains from different species – birds and humans, or humans and pigs – genetically mix to make a new virus that spreads faster and makes people sicker than either strain alone. Public health authorities monitor places where people live in close contact with animals for the first signs of new pandemic viruses.

Reporting Jan. 31 in Nature Communications, the researchers identified features of the influenza virus genome that affect how well the virus multiplies. These features are similar but not identical across viral strains. It’s possible that the extent of similarity between strains influences whether two flu viruses can mix their genetic material to make a hybrid virus with the potential to explode into pandemic flu.

“We think that two strains need to have similar features in their genome to re-assort and make a new virus,” said senior author Jacco Boon, PhD, an assistant professor of medicine at Washington University. “We hope that in the future, this work will allow us to focus on certain strains of influenza virus and target our surveillance more narrowly so we have a better chance of identifying the next pandemic flu before it spreads.”

Flu viruses multiply by infecting cells and hijacking the cell’s machinery to mass-produce copies of the virus’s genome and proteins, which are then bundled into new viruses. Influenza virus’s genome is broken into eight parcels of RNA, a molecule similar to DNA. When a cell is infected with two or more flu strains at once, the genetic parcels from the different strains tend to get mixed up. The result is often a new influenza strain born with genetic information from multiple parental strains.

Boon and first author Graham Williams, PhD, now a postdoctoral researcher at Duke University, with the help of Sebla Kutluay, PhD, an assistant professor of molecular microbiology, found that parts of the virus’s RNA genome fold like origami into specific 3-D shapes and that these shapes are necessary for the virus to multiply. When they mutated the genome to change the shapes, the viruses did not reproduce well. “Silent” mutations that left the shapes intact, on the other hand, did not affect multiplication.

There are thousands of different flu viruses in the world, each differing slightly in their genetic sequence and, most likely, the shapes into which their RNA folds. Flu viruses whose genomes form very different 3-D structures may not be able to mix their genomes into a new strain.

“Right now we do surveillance on pretty much everything,” said Boon, who is also an assistant professor of molecular microbiology, and of pathology and immunology. “But if we know that the viruses from a certain species or a certain region just don’t have the right RNA features, then we can make surveilling them a lower priority. If we can focus our resources more effectively, we may be able to catch the next pandemic flu before it really gets going.”

Williams GD, Townsend D, Wylie KM, Amarasinghe GK, Kutluay SB and Boon ACM. Nucleotide resolution mapping of influenza A virus nucleoprotein-RNA interactions reveals the landscape of viral RNA features required for replication. Nature Communications. Jan. 31, 2018.

This study was supported by the National Institutes of Health (NIH), grant numbers P01-AI120943 and R01-AI118938; National Institute of General Medical Sciences, grant number 5T32GM007067; the National Institute of Allergy and Infectious Diseases, grant number 2T32AI007172; and the Victoria Fraser Infectious Disease Research Fellowship.

Washington University School of Medicine‘s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation, currently ranked seventh in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Tamara covers infectious diseases, molecular microbiology, neurology, neuroscience, surgery, the Institute for Informatics, the Division of Physician-Scientists and the MSTP program. She holds a double bachelor's degree in molecular biophysics & biochemistry and in sociology from Yale University, a master's in public health from the University of California, Berkeley, and a PhD in biomedical science from the University of California, San Diego. She joined WashU Medicine Marketing & Communications in 2016. She has received three Robert G. Fenley writing awards from the American Association of Medical Colleges: a bronze in 2020 for "Mind’s quality control center found in long-ignored brain area," a silver in 2022 for "Mice with hallucination-like behaviors reveal insight into psychotic illness," and a bronze in 2023 for "Race of people given Alzheimer’s blood tests may affect interpretation of results." Since January of 2024, Tamara has been writing under the name Tamara Schneider.